FIBER BRAGG GRATINGS (FBGS)

Fibercore offers two types of Fiber Bragg Gratings (FBGs):

- Femtosecond laser written FBGs for high mechanical strength and reduced hydrogen, radiation and Ultra Violet (UV) photodarkening effects, suitable for use in harsh environments.
- Standard UV written FBGs for spectrally demanding applications, suitable for use in standard sensor and telecommunications environments.

The femtosecond laser written FBGs are written through the coating, without the need to strip and recoat the coating. This maintains the inherently high mechanical strength of the fiber, making the FBGs ideal for high strain and high reliability applications. The femtosecond inscription method also allows FBGs to be written into non-photosensitive glass, allowing FBGs to be written into pure silica core fibers, which have reduced attenuation sensitivity to hydrogen, radiation and UV. This allows the FBGs to be used in harsh environments that might be experienced in the Oil & Gas industry, nuclear environments and UV laser applications.

Standard UV written FBGs are available using the standard strip and recoat method. These FBGs offer a higher level of FBG specification with a greater flexibility on the spectral design, ideal for spectrally demanding applications in the sensing and telecommunications industries.

FEATURES

Advantages
- High mechanical strength FBGs
- Hydrogen darkening resistant
- Radiation induced attenuation resistant
- UV photodarkening resistant
- Flexible spectral characteristics

Typical Applications:
- Temperature sensing
- Strain sensing
- Hydrophone and geophone acoustic sensing
- Laser wavelength locking
- Wavelength division multiplexing

Product Variants
- Femtosecond FBG
 High reliability FBG written with a femtosecond laser
- UV written FBG
 FBG written with a UV laser

To find out more visit fibercore.com

22July2020_MD545
FIBER BRAGG GRATINGS (FBGS)

SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>FEMTOSECOND FBG</th>
<th>UV WRITTEN FBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Wavelength (nm)</td>
<td>800 - 860 1460 - 1640</td>
<td>970 - 1620</td>
</tr>
<tr>
<td>Wavelength Tolerance (nm)</td>
<td>± 0.2 (standard) ± 0.1 (optional)</td>
<td>± 0.5 (standard) ± 0.25 (optional)</td>
</tr>
<tr>
<td>Reflectivity (%)</td>
<td>≤99</td>
<td>1 - 99</td>
</tr>
<tr>
<td>FWHM Bandwidth (nm)</td>
<td>0.3 - 3</td>
<td>0.1 - 3</td>
</tr>
<tr>
<td>FBG Length (mm)</td>
<td>≤40</td>
<td>1 - 25</td>
</tr>
<tr>
<td>FBG Profile</td>
<td>Uniform or Apodized</td>
<td></td>
</tr>
<tr>
<td>Chirp</td>
<td>No</td>
<td>Not chirped (standard) Chirped (optional)</td>
</tr>
<tr>
<td>FBG Arrays</td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>Fiber Type</td>
<td>SM, MM</td>
<td>SM, PM</td>
</tr>
<tr>
<td>Fiber Cladding Diameters (μm)</td>
<td>125, 80</td>
<td>125, 80, 60, 50</td>
</tr>
<tr>
<td>Fiber Core Composition</td>
<td>Germanium Doped Pure Silica</td>
<td>Germanium Doped</td>
</tr>
</tbody>
</table>

Please note: Each parameter is inherently linked, therefore not all values are independently achievable.

RELATED PRODUCTS

- Boron Doped Photosensitive Fiber
- Highly Germanium Doped Fiber

Fibercore House | Southampton Science Park
United Kingdom | SO16 7QQ
T +44 (0)23 8076 9893 | E info@fibercore.com

fibercore.com